MTH 304: Metric Spaces and Topology Homework V

(Due 23/02)

- 1. Reading assignment: Read carefully through the proofs of Theorem 20.5 (page 123) and Example 2 (page 131) from Munkres.
- 2. Prove the converse of the sequence lemma as stated in 1.9 (xiv) of the lesson plan.
- 3. Prove assertion 1.9 (vii) of the lesson plan.
- 4. For $p \ge 1$, and for points $x, y \in \mathbb{R}^n$, define

$$d_p(x,y) = ||x-y||_p = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{1/p}$$

Assuming that d_p defines a metric on \mathbb{R}^n , show that it induces the standard topology.

- 5. Determine whether the following functions $\mathbb{R} \to \mathbb{R}^{\infty}$ are continuous in the product, box and uniform topologies.
 - (a) $f(t) = (t, 2t, 3t, \ldots).$
 - (b) g(t) = (t, t, t, ...).
 - (c) h(t) = (t, t/2, t/3, ...).
- 6. Let (X, d) be a metric space. Define a map $d' : X \times X \to \mathbb{R}$ by

$$d'(x,y) = \frac{d(x,y)}{1+d(x,y)},$$

for all $x, y \in \mathbb{R}$. [Hint: Consider f(x) = x/(x+1), for x > 0, and use the mean value theorem.]

- (a) Show that (X, d') is a metric space.
- (b) Show that $\mathcal{T}_d = \mathcal{T}_{d'}$.
- 7. Let (X, d_X) and (Y, d_Y) be metric spaces. Then a map $f: X \to Y$ such that

$$d_X(x,y) = d_Y(f(x), f(y)), \text{ for all } x, y \in X$$

is called an *isometry*.

- (a) Show that if $f: X \to Y$ is an isometry, then f is an embedding.
- (b) Show that a surjective isometry is a homeomorphism.
- 8. Let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by

$$f_n(x) = \frac{1}{n^3(x - (1/n))^2 + 1}.$$

- (a) Show that f_n converges pointwise to the zero function.
- (b) Show that f_n does not converge uniformly to the zero function.